A focused framework for emulating modal proof systems
نویسندگان
چکیده
Several deductive formalisms (e.g., sequent, nested sequent, labeled sequent, hypersequent calculi) have been used in the literature for the treatment of modal logics, and some connections between these formalisms are already known. Here we propose a general framework, which is based on a focused version of the labeled sequent calculus by Negri, augmented with some parametric devices allowing to restrict the set of proofs. By properly defining such restrictions and by choosing an appropriate polarization of formulas, one can obtain different, concrete proof systems for the modal logic K and for its extensions by means of geometric axioms. In particular, we show how to use the expressiveness of the labeled approach and the control mechanisms of focusing in order to emulate in our framework the behavior of a range of existing formalisms and proof systems for modal logic.
منابع مشابه
Focused Labeled Proof Systems for Modal Logic
Focused proofs are sequent calculus proofs that group inference rules into alternating negative and positive phases. These phases can then be used to define macro-level inference rules from Gentzen’s original and tiny introduction and structural rules. We show here that the inference rules of labeled proof systems for modal logics can similarly be described as pairs of such negative and positiv...
متن کاملA general proof certification framework for modal logic
One of the main issues in proof certification is that different theorem provers, even when designed for the same logic, tend to use different proof formalisms and to produce outputs in different formats. The project ProofCert promotes the usage of a common specification language and of a small and trusted kernel in order to check proofs coming from different sources and for different logics. By...
متن کاملThe Contribution of A.v. Kuznetsov to the Theory of Modal Systems and Structures
We will outline the contributions of A.V. Kuznetsov to modal logic. In his research he focused mainly on semantic, i.e. algebraic, issues and lattices of extensions of particular modal logics, though his proof of the Full Conservativeness Theorem for the proof-intuitionistic logic KM (Theorem 17 below) is a gem of proof-theoretic art.
متن کاملA Tableau Compiled Labelled Deductive System for Hybrid Logic
Compiled Labelled Deductive Systems (CLDS) provide a uniform logical framework where families of different logics can be given a uniform proof system and semantics. A variety of applications of this framework have been proposed so far ranging from extensions of classical logics (e.g. normal modal logics and multi-modal logics) to non-classical logics such as resource and substructural loogics. ...
متن کاملA Multi-Modal Framework for Achieving Accountability in Multi-Agent Systems
We present a multi-modal, model-theoretic framework for achieving accountability in multi-agent systems through formal proof. Our framework provides modalities for knowledge, provability, and time. With these modalities, we formalise the two main aspects of accountability, which are: soundness (accountability proper), i.e., for correct agents, the provability of their correctness by themselves;...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016